混混小说网

手机浏览器扫描二维码访问

第76章 对火星轨道变化问题的最后解释(第1页)

作者君在作品相关中其实已经解释过这个问题。

不过仍然有人质疑——“你说得太含糊了”,“火星轨道的变化比你想象要大得多!”

那好吧,既然作者君的简单解释不够有力,那咱们就看看严肃的东西,反正这本书写到现在,嚷嚷着本书bug一大堆,用初高中物理在书中挑刺的人也不少。

以下是文章内容:

long-termintegrationsandstabilityofplanetaryorbitsinoursolarsystem

abstract

wepresenttheresultsofverylong-termnumericalintegrationsofplanetaryorbitalmotionsover109-yrtime-spansincludingallnineplanets.aquickinspectionofournumericaldatashowsthattheplanetarymotion,atleastinoursimpledynamicalmodel,seemstobequitestableevenoverthisverylongtime-span.acloserlookatthelowest-frequencyoscillationsusingalow-passfiltershowsusthepotentiallydiffusivecharacterofterrestrialplanetarymotion,especiallythatofmercury.thebehaviouroftheeccentricityofmercuryinourintegrationsisqualitativelysimilartotheresultsfromjacqueslaskar'ssecularperturbationtheory(e.g.emax~0.35over~±4gyr).however,therearenoapparentsecularincreasesofeccentricityorinclinationinanyorbitalelementsoftheplanets,whichmayberevealedbystilllonger-termnumericalintegrations.wehavealsoperformedacoupleoftrialintegrationsincludingmotionsoftheouterfiveplanetsoverthedurationof±5x1010yr.theresultindicatesthatthethreemajorresonancesintheneptune–plutosystemhavebeenmaintainedoverthe1011-yrtime-span.

1introduction

1.1definitionoftheproblem

thequestionofthestabilityofoursolarsystemhasbeendebatedoverseveralhundredyears,sincetheeraofnewton.theproblemhasattractedmanyfamousmathematiciansovertheyearsandhasplayedacentralroleinthedevelopmentofnon-lineardynamicsandchaostheory.however,wedonotyethaveadefiniteanswertothequestionofwhetheroursolarsystemisstableornot.thisispartlyaresultofthefactthatthedefinitionoftheterm‘stability’isvaguewhenitisusedinrelationtotheproblemofplanetarymotioninthesolarsysteactuallyitisnoteasytogiveaclear,rigorousandphysicallymeaningfuldefinitionofthestabilityofoursolarsyste

amongmanydefinitionsofstability,hereweadoptthehilldefinition(gladman1993):actuallythisisnotadefinitionofstability,butofinstability.wedefineasystemasbecomingunstablewhenacloseencounteroccurssomewhereinthesystem,startingfromacertaininitialconfiguration(chambers,wetherillitotanikawa1999).asystemisdefinedasexperiencingacloseencounterwhentwobodiesapproachoneanotherwithinanareaofthelargerhillradius.otherwisethesystemisdefinedasbeingstable.henceforwardwestatethatourplanetarysystemisdynamicallystableifnocloseencounterhappensduringtheageofoursolarsystem,about±5gyr.incidentally,thisdefinitionmaybereplacedbyoneinwhichanoccurrenceofanyorbitalcrossingbetweeneitherofapairofplanetstakesplace.thisisbecauseweknowfromexperiencethatanorbitalcrossingisverylikelytoleadtoacloseencounterinplanetaryandprotoplanetarysystems(yoshinaga,kokubomakino1999).ofcoursethisstatementcannotbesimplyappliedtosystemswithstableorbitalresonancessuchastheneptune–plutosyste

1.2previousstudiesandaimsofthisresearch

inadditiontothevaguenessoftheconceptofstability,theplanetsinoursolarsystemshowacharactertypicalofdynamicalchaos(sussmanwisdom1988,1992).thecauseofthischaoticbehaviourisnowpartlyunderstoodasbeingaresultofresonanceoverlapping(murraylecar,franklinholman2001).however,itwouldrequireintegratingoveranensembleofplanetarysystemsincludingallnineplanetsforaperiodcoveringseveral10gyrtothoroughlyunderstandthelong-termevolutionofplanetaryorbits,sincechaoticdynamicalsystemsarecharacterizedbytheirstrongdependenceoninitialconditions.

fromthatpointofview,manyofthepreviouslong-termnumericalintegrationsincludedonlytheouterfiveplanets(sussmankinoshitanakai1996).thisisbecausetheorbitalperiodsoftheouterplanetsaresomuchlongerthanthoseoftheinnerfourplanetsthatitismucheasiertofollowthesystemforagivenintegrationperiod.atpresent,thelongestnumericalintegrationspublishedinjournalsarethoseofduncanlissauer(1998).althoughtheirmaintargetwastheeffectofpost-main-sequencesolarmasslossonthestabilityofplanetaryorbits,theyperformedmanyintegrationscoveringupto~1011yroftheorbitalmotionsofthefourjovianplanets.theinitialorbitalelementsandmassesofplanetsarethesameasthoseofoursolarsysteminduncanlissauer'spaper,buttheydecreasethemassofthesungraduallyintheirnumericalexperiments.thisisbecausetheyconsidertheeffectofpost-main-sequencesolarmasslossinthepaper.consequently,theyfoundthatthecrossingtime-scaleofplanetaryorbits,whichcanbeatypicalindicatoroftheinstabilitytime-scale,isquitesensitivetotherateofmassdecreaseofthesun.whenthemassofthesunisclosetoitspresentvalue,thejovianplanetsremainstableover1010yr,orperhapslonger.duncanlissaueralsoperformedfoursimilarexperimentsontheorbitalmotionofsevenplanets(venustoneptune),whichcoveraspanof~109yr.theirexperimentsonthesevenplanetsarenotyetcomprehensive,butitseemsthattheterrestrialplanetsalsoremainstableduringtheintegrationperiod,maintainingalmostregularoscillations.

ontheotherhand,inhisaccuratesemi-analyticalsecularperturbationtheory(laskar1988),laskarfindsthatlargeandirregularvariationscanappearintheeccentricitiesandinclinationsoftheterrestrialplanets,especiallyofmercuryandmarsonatime-scaleofseveral109yr(laskar1996).theresultsoflaskar'ssecularperturbationtheoryshouldbeconfirmedandinvestigatedbyfullynumericalintegrations.

inthispaperwepresentpreliminaryresultsofsixlong-termnumericalintegrationsonallnineplanetaryorbits,coveringaspanofseveral109yr,andoftwootherintegrationscoveringaspanof±5x1010yr.thetotalelapsedtimeforallintegrationsismorethan5yr,usingseveraldedicatedpcsandworkstations.oneofthefundamentalconclusionsofourlong-termintegrationsisthatsolarsystemplanetarymotionseemstobestableintermsofthehillstabilitymentionedabove,atleastoveratime-spanof±4gyr.actually,inournumericalintegrationsthesystemwasfarmorestablethanwhatisdefinedbythehillstabilitycriterion:notonlydidnocloseencounterhappenduringtheintegrationperiod,butalsoalltheplanetaryorbitalelementshavebeenconfinedinanarrowregionbothintimeandfrequencydomain,thoughplanetarymotionsarestochastic.sincethepurposeofthispaperistoexhibitandoverviewtheresultsofourlong-termnumericalintegrations,weshowtypicalexamplefiguresasevidenceoftheverylong-termstabilityofsolarsystemplanetarymotion.forreaderswhohavemorespecificanddeeperinterestsinournumericalresults,wehavepreparedawebpage(access),whereweshowraworbitalelements,theirlow-passfilteredresults,variationofdelaunayelementsandangularmomentumdeficit,andresultsofoursimpletime–frequencyanalysisonallofourintegrations.

insection2webrieflyexplainourdynamicalmodel,numericalmethodandinitialconditionsusedinourintegrations.section3isdevotedtoadescriptionofthequickresultsofthenumericalintegrations.verylong-termstabilityofsolarsystemplanetarymotionisapparentbothinplanetarypositionsandorbitalelements.aroughestimationofnumericalerrorsisalsogiven.section4goesontoadiscussionofthelongest-termvariationofplanetaryorbitsusingalow-passfilterandincludesadiscussionofangularmomentumdeficit.insection5,wepresentasetofnumericalintegrationsfortheouterfiveplanetsthatspans±5x1010yr.insection6wealsodiscussthelong-termstabilityoftheplanetarymotionanditspossiblecause.

2descriptionofthenumericalintegrations

(本部分涉及比较复杂的积分计算,作者君就不贴上来了,贴上来了起点也不一定能成功显示。)

2.3numericalmethod

weutilizeasecond-orderwisdom–holmansymplecticmapasourmainintegrationmethod(wisdomkinoshita,yoshidanakai1991)withaspecialstart-upproceduretoreducethetruncationerrorofanglevariables,‘warmstart’(sahatremaine1992,1994).

thestepsizeforthenumericalintegrationsis8dthroughoutallintegrationsofthenineplanets(n±1,2,3),whichisabout111oftheorbitalperiodoftheinnermostplanet(mercury).asforthedeterminationofstepsize,wepartlyfollowthepreviousnumericalintegrationofallnineplanetsinsussmanwisdom(1988,7.2d)andsahatremaine(1994,22532d).weroundedthedecimalpartofthetheirstepsizesto8tomakethestepsizeamultipleof2inordertoreducetheaccumulationofround-offerrorinthecomputationprocesses.inrelationtothis,wisdomholman(1991)performednumericalintegrationsoftheouterfiveplanetaryorbitsusingthesymplecticmapwithastepsizeof400d,110.83oftheorbitalperiodofjupiter.theirresultseemstobeaccurateenough,whichpartlyjustifiesourmethodofdeterminingthestepsize.however,sincetheeccentricityofjupiter(~0.05)ismuchsmallerthanthatofmercury(~0.2),weneedsomecarewhenwecomparetheseintegrationssimplyintermsofstepsizes.

intheintegrationoftheouterfiveplanets(f±),wefixedthestepsizeat400d.

weadoptgauss'fandgfunctionsinthesymplecticmaptogetherwiththethird-orderhalleymethod(danby1992)asasolverforkeplerequations.thenumberofmaximumiterationswesetinhalley'smethodis15,buttheyneverreachedthemaximuminanyofourintegrations.

theintervalofthedataoutputis200000d(~547yr)forthecalculationsofallnineplanets(n±1,2,3),andabout8000000d(~21903yr)fortheintegrationoftheouterfiveplanets(f±).

althoughnooutputfilteringwasdonewhenthenumericalintegrationswereinprocess,weappliedalow-passfiltertotheraworbitaldataafterwehadcompletedallthecalculations.seesection4.1formoredetail.

2.4errorestimation

2.4.1relativeerrorsintotalenergyandangularmomentum

accordingtooneofthebasicpropertiesofsymplecticintegrators,whichconservethephysicallyconservativequantitieswell(totalorbitalenergyandangularmomentum),ourlong-termnumericalintegrationsseemtohavebeenperformedwithverysmallerrors.theaveragedrelativeerrorsoftotalenergy(~10?9)andoftotalangularmomentum(~10?11)haveremainednearlyconstantthroughouttheintegrationperiod(fig.1).thespecialstartupprocedure,warmstart,wouldhavereducedtheaveragedrelativeerrorintotalenergybyaboutoneorderofmagnitudeormore.

relativenumericalerrorofthetotalangularmomentumδaa0andthetotalenergyδee0inournumericalintegrationsn±1,2,3,whereδeandδaaretheabsolutechangeofthetotalenergyandtotalangularmomentum,respectively,ande0anda0aretheirinitialvalues.thehorizontalunitisgyr.

notethatdifferentoperatingsystems,differentmathematicallibraries,anddifferenthardwarearchitecturesresultindifferentnumericalerrors,throughthevariationsinround-offerrorhandlingandnumericalalgorithms.intheupperpaneloffig.1,wecanrecognizethissituationinthesecularnumericalerrorinthetotalangularmomentum,whichshouldberigorouslypreserveduptomachine-eprecision.

2.4.2errorinplanetarylongitudes

sincethesymplecticmapspreservetotalenergyandtotalangularmomentumofn-bodydynamicalsystemsinherentlywell,thedegreeoftheirpreservationmaynotbeagoodmeasureoftheaccuracyofnumericalintegrations,especiallyasameasureofthepositionalerrorofplanets,i.e.theerrorinplanetarylongitudes.toestimatethenumericalerrorintheplanetarylongitudes,weperformedthefollowingprocedures.wecomparedtheresultofourmainlong-termintegrationswithsometestintegrations,whichspanmuchshorterperiodsbutwithmuchhigheraccuracythanthemainintegrations.forthispurpose,weperformedamuchmoreaccurateintegrationwithastepsizeof0.125d(164ofthemainintegrations)spanning3x105yr,startingwiththesameinitialconditionsasinthen?1integration.weconsiderthatthistestintegrationprovidesuswitha‘pseudo-true’solutionofplanetaryorbitalevolution.next,wecomparethetestintegrationwiththemainintegration,n?1.fortheperiodof3x105yr,weseeadifferenceinmeananomaliesoftheearthbetweenthetwointegrationsof~0.52°(inthecaseofthen?1integration).thisdifferencecanbeextrapolatedtothevalue~8700°,about25rotationsofearthafter5gyr,sincetheerroroflongitudesincreaseslinearlywithtimeinthesymplecticmap.similarly,thelongitudeerrorofplutocanbeestimatedas~12°.thisvalueforplutoismuchbetterthantheresultinkinoshitanakai(1996)wherethedifferenceisestimatedas~60°.

3numericalresults–i.glanceattherawdata

inthissectionwebrieflyreviewthelong-termstabilityofplanetaryorbitalmotionthroughsomesnapshotsofrawnumericaldata.theorbitalmotionofplanetsindicateslong-termstabilityinallofournumericalintegrations:noorbitalcrossingsnorcloseencountersbetweenanypairofplanetstookplace.

3.1generaldescriptionofthestabilityofplanetaryorbits

first,webrieflylookatthegeneralcharacterofthelong-termstabilityofplanetaryorbits.ourinterestherefocusesparticularlyontheinnerfourterrestrialplanetsforwhichtheorbitaltime-scalesaremuchshorterthanthoseoftheouterfiveplanets.aswecanseeclearlyfromtheplanarorbitalconfigurationsshowninfigs2and3,orbitalpositionsoftheterrestrialplanetsdifferlittlebetweentheinitialandfinalpartofeachnumericalintegration,whichspansseveralgyr.thesolidlinesdenotingthepresentorbitsoftheplanetsliealmostwithintheswarmofdotseveninthefinalpartofintegrations(b)and(d).thisindicatesthatthroughouttheentireintegrationperiodthealmostregularvariationsofplanetaryorbitalmotionremainnearlythesameastheyareatpresent.

verticalviewofthefourinnerplanetaryorbits(fromthez-axisdirection)attheinitialandfinalpartsoftheintegrationsn±1.theaxesunitsareau.thexy-planeissettotheinvariantplaneofsolarsystemtotalangularmomentu(a)theinitialpartofn+1(t=0to0.0547x109yr).(b)thefinalpartofn+1(t=4.9339x108to4.9886x109yr).(c)theinitialpartofn?1(t=0to?0.0547x109yr).(d)thefinalpartofn?1(t=?3.9180x109to?3.9727x109yr).ineachpanel,atotalof23684pointsareplottedwithanintervalofabout2190yrover5.47x107yr.solidlinesineachpaneldenotethepresentorbitsofthefourterrestrialplanets(takenfromde245).

真爱  前男友们怎么都要娶我啊  微甜梦境  灰姑娘的玻璃舞鞋  重生之宠你一辈子  平行科技公司  接受  顶流难医[娱乐圈]  落在那一夜的我  狼妖伴侣  泰坦无人声  灵异少女见鬼实录  [快穿]人生赢家的奋斗史  不服[重生]  萌宝来袭:爹地,妈咪超甜的  你或像你的人(1v1H)  寧空等待  和离后清冷太子他急了  蓝色星空下的你  穿成龙傲天男主的未婚妻  

热门小说推荐
农女有毒

农女有毒

农女有毒简介emspemsp凌羽意外来到武魂世界,并觉醒了武魂系统,从此开始了华丽的逆袭之路,不管你是天才还是妖孽,照杀!不管你是老祖还是大帝。照灭!不管你是妖女还是仙女,照收!嘿嘿嘿!开挂的人生真是爽爆天啊!最┊新┇文┊章...

穿书后我成了王爷的掌心娇

穿书后我成了王爷的掌心娇

穿书后我成了王爷的掌心娇简介emspemsp穿书后我成了王爷的掌心娇是星影仙子的经典其他类型类作品,穿书后我成了王爷的掌心娇主要讲述了王爷,这是臣妾研究的新菜草莓炒臭豆腐,还放了花椒提味星影仙子最新鼎力大作,年度必看其他类型。禁...

一万种清除玩家的方法

一万种清除玩家的方法

我穿越的世界遍布玩家,生存本就不易,而我更是被系统缠身,成了NPC中最耀眼的那个土著看我不顺眼,玩家视我为眼中钉。为了在异世界美好的生活,为了不被玩家欺辱,我只能竭尽全力,把所经历的苦厄变成别人的苦厄,把所有的收获留给自己,茁壮成长,成为一个永远无法被玩家打败的BOSS这是一本第四天灾被天灾的故事。已完结万订作品万界圆梦师,人品保证,请放心入坑。如果您喜欢一万种清除玩家的方法,别忘记分享给朋友...

重生野火时代

重生野火时代

重生野火时代简介emspemsp重生野火时代是启煜的经典都市言情类作品,重生野火时代主要讲述了1989年那个夏天,暴雨如注。在这个同样的时间节点,陆坤走出启煜最新鼎力大作,年度必看都市言情。海棠屋(haitangshuwucom)提供重生...

狂宠全能废柴妃

狂宠全能废柴妃

狂宠全能废柴妃简介emspemsp事后,某妖孽醒来,看着一身凌乱,眸底烈焰燃烧。女人,你休想逃!当纵横二十一世纪的佣兵王,穿越成废材无能的白家三小姐。从此人生逆袭,翻手为云覆手雨!渣妹歹毒算计,她三五巴掌给打成了猪头。贱男轻贱羞...

让你代管狼牙,火凤凰全成女兵王

让你代管狼牙,火凤凰全成女兵王

陈锋穿越到我是特种兵的世界,在这个世界自己居然是富二代的身份。叶寸心陈锋,我怀了你的孩子,你说怎么办吧。范天雷陈锋,有兴趣做我们铁手团的兵吗?康师傅这个兵是我的,谁也别想从我这里挖走,德州扒鸡,二十年的好酒也不行,谁挖谁孙子。雷战陈锋啊,我可是你舅舅,有没有兴趣来我们火凤凰女子特战队来当指挥官,叶寸心也在我们火凤凰哦!陈锋如果您喜欢让你代管狼牙,火凤凰全成女兵王,别忘记分享给朋友...

每日热搜小说推荐