手机浏览器扫描二维码访问
2021年12月3日,天格计划的grid02天文立方星载荷观测到的宇宙伽马射线暴事例grb210121a及其物理分析的论文在线发表在《美国天体物理学报theastrophysial上。南京大学与清华大学天格团队合作完成了这次天格观测数据的处理和物理分析。这是天格计划首篇正式发表的伽马暴科学观测结果,也是国际上同类微纳卫星指质量小于10千克、具有实际使用功能的卫星伽马暴探测项目中,首例取得科学发现和论文发表的伽马暴事例。这项工作表明该类微纳卫星在空间天文粒子探测、前沿天文科学观测等方面具有广阔的应用前景。
“天格计划“是一个以本科生学生团队为主体的空间科学项目,其主要科学目标为寻找与引力波、快速射电暴成协的伽马暴以及其它高能天体物理瞬变源。其特色是利用立方星(分米级别的小卫星模块)平台,搭建由多个小卫星组成的全天伽马射线暴监视网络,用以探测和定位伽马射线暴等天体瞬变源。相比于综合型、高功率的大型卫星,如美国航空航天局(nasa)将于2021年底发射的质量高达62吨、成本已逾数百亿美元的詹姆斯·韦伯空间望远镜(jst),立方星具有模块化、低成本、短周期的特点,能够实现大卫星无法实现的快速发射、多颗组网、全天覆盖,还可以降低风险与成本。天格计划预计利用1024颗立方星在00600公里的近地轨道进行组网,在20182023年内逐步完成。这一方案能够实现对短伽马射线暴真正的全天覆盖探测,并可通过时间延迟和流强调制的方式实现有效定位,可保证不错过任何一次与引力波暴发成协的短伽马射线暴,有着重要的科学意义。
2016年,天格计划由清华大学工程物理系和天文系共同发起,目前有南京大学、中科院高能所等20余所高校和研究所共同参与合作。南京大学、bj师范大学等高校的天格团队也将完成卫星载荷的研发调试。截至目前,天格计划已于2018年10月、2020年11月和12月分别发射了三颗天格卫星。天格02星(grid02,见图2)已积累了个月的科学数据,其首批科学数据已被国家空间科学数据中心接收,未来将对科学界保持开放共享。
南京大学天格团队自2018年成立以来,在江苏省双创计划、南京大学天文与空间科学学院、南京大学双创办公室等的有力支持下,成立了创新团队,充分发挥团队的天文专业优势,开发了科学数据产品分析的流程管线(pipele),设置了富有特色的科创融合课程,展开对小卫星探测器的研发。目前,南大天格团队已经成功完成了首颗南大川大合作天格立方星——天宁星——载荷的地面试验,预期于2022年3月发射。同时,南京大学天格小卫星团队经过1年半的研发、设计、实验论证,于2021年10月最终确定了自主设计的第二颗立方星——应天星——的载荷设计方案。该方案使用可编程逻辑门(pga)芯片替代原有的单片机cu芯片,充分利用可编程逻辑的并行性、高性能和灵活性等特点。这个方案在本领域内具有前沿创新性和独特性,充分体现了了以学生为主体的小型项目的灵活性和创新性。
天格计划的主要科学观测目标是伽马射线暴。宇宙伽马射线暴是人类已知最剧烈的天体物理过程之一,是天体物理领域的研究前沿。2020年11月清华大学天格计划团队研制发射的天格02星载荷成功开展持续科学观测,已获得首批几十例伽马暴事例的候选体。2021年1月21日,天格02星观测到grb210121a伽马暴事例图1,该事例也被我国怀柔一号ca,极目卫星、慧眼hxt卫星和美国费米erigb卫星所确认。有趣的是,grb210121a在近万个伽马暴样本中的统计分布中处于很特殊的地位。其持续时间大约为13秒,具有明显的长暴特征长于2s的伽马暴被定义为长暴。通过使用截断幂率谱(cpl;cutopoer)模型对观测数据进行拟合,研究团队发现grb210121a的谱指数偏硬,高于同步辐射限制的低能谱指数上限,此外其峰值能量(ep)很硬,在第一个脉冲的时候由硬到软,但是即使在最后的爆发阶段也始终居高不下。高能量伽马射线光子总是比低能量光子更早到达,这一现象被称为谱延迟(spectralg),在grb210121a中同样观测到这一现象,并且在相对于Δe的图像中显现出一个拐点,这一现象有可能用于对洛伦兹破缺效应的限制。
研究团队进一步通过该伽马暴的谱指数初步判断其属于光球模型,利用多色黑体的模型进行拟合得到了很好的效果。理论上伽马暴的峰值能量应小于等于黑体所释放的最大能量,通过这一限制可以求出光球模型的半径范围,利用物理的光球模型对grb210121a进行拟合,得到其半径为几百千米,正好处在光球模型的半径限制内,同时这一模型也限制了该伽马暴的红移位于014到046的范围内。通过epei的统计相关关系,研究团队限制了其红移应位于03到30的范围内。此外再结合ca、hxt、grid等卫星以及ipn所给出的定位信息,在星表中对grb210121a的宿主星系进行了证认,仅有superos星表中的j010729?4619288星系能够满足上述限制,其红移为0319。研究团队随后使用scubres天文台全球望远镜网络对该宿主星系进行了后随观测,在观测图像中该宿主星系候选者清晰可见,从而进一步证实了本文的结论。
本研究工作由南京大学天文与空间科学学院硕士研究生王翔煜领衔完成,清华大学天格团队郑煦韬同学、中科院高能物理研究所肖硕同学等分别带领研究团队合作完成了grid02、ca、hxt等科学数据的分析处理。南京大学多个院系的多位本科生和研究生参与了相关的科学分析,包括杨俊天文学院博士研究生、刘子科天文学院硕士研究生、杨雨涵天文学院博士研究生、邹金航天文学院联合培养硕士研究生、陈国银天文学院本科生、倪阳天文学院本科生、张子键天文学院本科生、吴雨暄天文学院本科生、邓云未天文学院本科生、马永昶天文学院本科生、蒙延智天文学院博士后,王培源匡亚明学院本科生、许晟天文学院本科生、尹一涵物理学院本科生、张廷钧匡亚明学院本科生、张钊天文学院硕士研究生等。南京大学张彬彬老师、清华大学曾鸣老师、中科院高能物理所的熊少林老师为该文的通讯作者。清华大学、中科院高能物理所、河北师范大学、广西大学等多位专家学者共同参与了这一研究工作。本工作得到国家自然科学基金、科技部重点研发计划、江苏省双创计划、中央高校基本科研业务费专项资金、双一流大学建设经费,南京大学天文与空间科学学院、以及南京大学双创办公室的多项基金和机构的支持。
自行是恒星横越天球的总运动量,是通过比较更遥远的背景天体位置确定出来的。虽然天仓五每年的移动量只有2弧秒以下,它被认为是一颗有着高自行的恒星,需要数千年的时间,位置的移动才会超一度,高自行是距离靠近太阳的一个证据。邻近的恒星比遥远的背景恒星可以更快速的在天球上横越而过,也是研究视差的良好候选者。在天仓五的案例中,经由视差测量得到的距离是119光年,使他成为邻近太阳的近距离恒星表中的一员,是继南门二之后最靠近的g型恒星。
径向速度是一颗恒星接近或远离太阳的运动,与自行不同的是恒星的径向速度不能直接观察到,而必须透过观察恒星的光谱来测量。由于多普勒位移,如果恒星远离观测者而去,光谱中的吸收谱线会向红色方向偏移或是往更长波长的方向,反之接近的会向蓝色方向偏移或是往更短波长的方向。在天仓五的例子中,径向速度大约是?17公里秒,负值表示他是朝向太阳运动。[1]
天仓五的距离,与它的自行和径向速度结合在一起,可以计算这颗恒星通过空间的运动,相对于太阳的空间速度大约是37公里秒。这个结果可以用来计算天仓五穿越银河的轨道路径,它的平均银心距离是97千秒差距32,000光年,轨道离心率则是022。[2]
物理性质
天仓五这个系统应该只有一颗伴星,有一颗可能受到重力束缚的黯淡伴星被观测到,但是与主星的距离远达10弧秒。没有天体位置测量或迳向速度的摄动被曾经被侦测到,因此认为没有足够大的伴星,像是“热木星”的天体在邻近的轨道上运行,任何可能存在绕着天仓五运行的气体巨星,距离都会比木星要远。
有关于天仓五的已知物理特性都来自分光镜的测量。通过光谱和恒星演化模型的比较,能够估计天仓五的年龄、质量、半径和发光度。不过,透过天文干涉仪,相当准确的行星半径量度可以直接做到。天文干涉仪展开一条长基线所丈量的角度远较传统天文望远镜所能解析的为小。透过这种手段,天仓五的半径被假设为太阳半径的816±13,因此预期它的质量会比太阳略低一些;更早的干涉仪测量建议半径为太阳的773±04,但是精确度较低。
自转
(1张)
天仓五的自转周期是依据传统的h和吸收线,标志着被电离的钙或是钙ii线的变化测定的,这组谱线的变化与表面的磁性活动紧密的结合在一起,所以对行星来说要完成恒星全自转的量度需要对几个活动域测量其周期变化的时间。由这种方法估计的天仓五自转周期约为34天。由于多普勒效应,恒星自转的速率会导致吸收谱线的变宽来自远离观测者那一侧的光线波长将增长,朝向观测者接近这一侧的光波长将缩短,所以分析谱线的宽度可以估计出恒星自转的速度。这显示出天仓五的自转速度为:
此处veq是在赤道上的速度,i是自转轴相对于观测者的倾角。对一颗典型的g8型恒星,自转速度大约是2公里秒。测量到的自转速度非常低,显示天仓五的自转轴几乎是朝向位于地球上的观测者。[3]
光度和变化
天仓五的光度大约只有太阳光度rosity的,[4]一颗类地行星需要在07天文单位au,地球到太阳的平均距离的轨道上绕行,才能得到如同地球所获得的太阳照度,这要比金星还要更接近太阳一些。
天仓五的色球层-恒星正位于辐射光线的光球层上的大气层-目前呈现很少或没有磁场的活动,显示这是颗稳定的恒星。一项为期9年的温度研究,米粒组织和色球层没有明显的系统性变化,环绕着钙ii的h和线红外谱带显示可能有,但相对于太阳是微弱的11年循环。对此另一种说法是:天仓五正处于类似蒙德极小期的低活动阶段-历史上的一个短周期,与欧洲的小冰期结合,当时太阳表面的黑子变得非常罕见。天仓五的谱线轮廓非常狭窄,显示被观察到的自转和扰动都非常低。
金属量编辑播报
恒星的化学成分能够提供重要的演化历史,包括他的形成和年龄。组成星际物质的主要成分是尘埃和气体,而从中形成的恒星主要成分是氢和氦,以及微量的重元素。当邻近的恒星持续的演化和死亡,因此年轻恒星的重元素含量会倾向比老年的恒星为多。这些重元素都被天文学家视为金属,并且将其含量称为金属量。恒星中的金属量主要是依据铁e元素含量的比率,很容易从氢当中分辨出来的重元素,并以对数与太阳的铁丰度作比较。在天仓五的案例里,大气中的金属量大约是:
第五十章寻找志愿者
我点万物化灵 九千岁逼良为妻 炮灰军嫂翻身记 雷仙崛起 女色风暴 霍大佬夫人是小团宠 被活埋三年我死了他疯了宋明珠裴枭周毅川 地下密藏1949 困娇莺 抗性点满横推一切 风华舞姬 从聊斋开始反转人生 我的世界还可以有你 钓到高冷学神后 我爱向日葵 大唐传奇合集 穿越古代找个大佬来宠我 国民校草:宝贝,乖乖入怀! 上古仙医在都市 辰少,娇妻慢慢哄
前世,凌轩是江城世家凌家丢失的少爷。凌轩有四个姐姐,大姐清冷女总裁凌梦掌管,二姐泼辣性感女总裁凌涵掌管,三姐娱乐圈当红清纯女神小花凌曦,四姐魔都大学生娃娃音cos女王凌琪。高一凌轩被找回后,却被养子弟弟的假少爷凌昊栽赃陷害。父母对他动辄打骂,横眉冷对。四个姐姐也因为被假少爷诱导,对凌轩没个好脸色,有时还把他拎过...
神都惊龙简介emspemsp关于神都惊龙十年前,京都夏家一位少年被逐出家族,在那风雨交加的夜晚,一个小女孩告诉他要对生活充满希望。十年后,那个让国际战场颤抖的战神归来。这一生,除了我没人可以再欺你。...
盛世至尊简介emspemsp关于盛世至尊先天至尊叶天被好兄弟与未婚妻联手暗害,陨落后的叶天重生于叶无尘,至此新骄已出,万道争锋!今世抱得美人归的叶无尘将踏破天道,成为新一代的盛世至尊,手刃敌仇,了断与未婚妻恩怨情仇!...
穿越八零挣钱全靠我简介emspemsp关于穿越八零挣钱全靠我八十年代的华夏,一位具有现代知识的女性郝好,与一位耳有残疾的年轻人田润生,在矿区早餐摊相识,相知,一路扶持,乘着改革开放的东风,一起迈入新时代。...
周昭暖在冷宫出生,四岁的时候,娘亲告诉她,如果她不去抱她爹的大腿,她们一家人都得死,于是,小团子凭着一腔孤勇爬上了金銮殿,看着那个杀人不眨眼的暴君初生牛犊不怕虎般抱住他大腿直喊,我不是野种,我是你的种。某暴君笑话,他十年不举,哪里有什么孩子,一脚将人给踹了出去。得知真相后,他屁颠屁颠的追女火葬场...
穿越异界,成为阴阳摆渡人。本为自保,偷偷发育。铁布衫108重!金钟罩他以为自己还很弱小。在不小心遇到恶灵后,全力爆发。犹如大日昭昭,烈焰灼灼。凶魂恶灵,全都灰飞烟灭。从此他才发现摆渡的真谛。凶灵!?请您上路!原来,自己早已无敌!已有高定过万作品全世界都不知道我多强,大家多多支持。如果您喜欢黄泉摆渡人,别忘记分享给朋友...