混混小说网

手机浏览器扫描二维码访问

第302章 怎么都不来啊(第1页)

1、将特征重要程度排序的过程与模型构建过程同时进行的特征选择方法称作嵌入式特征选择方法(√)2、线性回归模型的目标函数为残差平方和最大化(残差平方和最小化)3、特征向量中心度度量节点在网络中的影响力。网络中每个节点被赋予一个影响力分数,一个节点与更多的高分节点相连,其分数也趋向于更高。(√)4、强化学习使用已标记的数据,根据延迟奖励学习策略。(未标记的数据,通过与环境的交互来收集数据进行学习)5、过拟合是机器学习中一个重要概念,是指模型过于复杂,导致对测试数据预测很好,但对训练数据预测很差。(对训练数据预测很好,对测试数据预测很差)三、分析题(本题满分30分,共含5道小题,每小题6分)1、现有样本如下:0,2,3,4,5,6,7,8,9,10,41,42,43,44,45,46,47,48,49,50。使用等距离散化来处理该样本,将样本分为5个区间段。有几个区间内样本容量不为0?你的答案:2你的计算过程:首先,计算样本的最小值和最大值:最小值:0最大值:50然后,确定分为5个区间时的间距:(最大值-最小值)区间数=(50-0)5=10接下来,以间距为10进行等距离散化:区间1:0-9(共10个样本)区间2:10-19(无样本)区间3:20-29(无样本)区间4:30-39(无样本)区间5:40-50(共11个样本)根据以上结果,有2个区间段(区间2和区间3)内的样本容量不为0。请注意,这种等距离散化方式可能导致某些区间没有样本,而其他区间样本较多。2、随机森林采用的是什么集成方法?(A.Bagging,B.Boosting,C.Stacking)。这种集成方法适用于什么情况?你的选择:bagging你的解释:Bagging(自举汇聚法)适用于以下情况:训练数据较少,需要尽可能充分利用现有的有限样本。数据集存在较强的噪声或离群点,需要通过多个模型的平均来减小噪声影响。需要降低模型的方差,提高模型的稳定性和鲁棒性。模型复杂度较高,容易过拟合,需要引入随机性增加泛化能力。Bagging通过对原始训练集进行有放回的抽样,构建多个子模型。每个子模型相互独立地训练,并通过取平均值(回归问题)或投票(分类问题)的方式进行预测。随机森林就是一种基于Bagging思想的集成学习算法,它使用决策树作为基分类器,并通过对特征的随机选择进一步增加模型的多样性。由于Bagging的平行结构,随机森林可以有效处理大规模数据,具有较好的预测性能和计算效率。3、为了考察一种新的教学方法对学生英语成绩的影响,某学校进行了调查,共得到400个样本数据。数据表中GRADE为标签,PSI、GPA、TUC为特征。GRADE为分类数据,取1表示学习成绩提高,0表示学习成绩没有提高;PSI为分类数据,取1表示接受了新的教学方法指导,0表示没有接受新的教学方法指导;GPA表示学生平均积分点,为数值型数据;TUC表示以往的学生成绩,为数值型数据。假如,想了解GPA、TUC和PSI对学生成绩是否有影响,以及预测学生学习成绩是否会提高,你会选择下述用哪个。

模型?为什么?(A.线性回归B.逻辑回归C.聚类D.关联规则挖掘)你的选择:逻辑回归你的解释:逻辑回归是一种广泛应用于分类问题的机器学习算法。在这个情况下,我们的目标是预测学习成绩是否提高,这是一个二分类问题,即学习成绩提高或不提高。逻辑回归可以用来建立一个概率模型,根据给定的特征值(GPA、TUC和PSI),计算出学生成绩提高的概率。逻辑回归模型的输出是一个概率值,表示学生成绩提高的可能性。这使得我们能够根据学生的特征值进行预测,并判断他们学习成绩是否会提高。此外,逻辑回归还可以提供每个特征的权重系数,帮助我们理解各个特征对学生成绩的影响程度。线性回归(A.线性回归)也可用于这个问题,但它更适用于连续数值型的目标变量的预测,而不是二分类问题。聚类(C.聚类)是无监督学习方法,不适用于这个情况。关联规则挖掘(D.关联规则挖掘)通常用于发现数据中的频繁项集和关联关系,不太适合用于预测学生成绩的问题。因此,在给出的选项中,选择使用逻辑回归模型(B.逻辑回归)是合适的,它可以用于预测学生学习成绩是否会提高,并了解GPA、TUC和PSI对学生成绩的影响程度。4、K-means算法在给定数据集上运行第一次后的结果为,数据集分为三个簇:cluster1:(1,3)、(2,4);cluster2:(4,0)、(2,0);cluster3:(0,3)、(0,5)。样本(0,3)和cluster2的质心之间的曼哈顿距离为:你的答案:5你的计算过程:Cluster2的质心:(4+2)2=3;0样本的坐标是(0,3),Cluster2的质心是(3,0)。将给定的点代入公式,我们有:d=|3-0|+|0-3|=|3|+|-3|=3+3=6。

本小章还未完,请点击下一页继续阅读后面精彩内容!

。。

1Bagging(包装法):优势:Bagging通过随机有放回地对训练数据进行采样,每个基分类器独立训练,然后通过投票或平均等方式进行集成,能够有效降低过拟合风险,提高模型的泛化能力。它尤其适合在高方差的模型上使用,如决策树等。局限性:对于高偏差的模型来说,Bagging可能无法显着改善模型性能。此外,由于基分类器的独立性,Bagging不容易处理存在较强相关性的数据,比如时间序列数据。使用场景:Bagging通常用于分类和回归问题,在数据集较大且噪声相对较小的情况下表现良好。2Boosting(提升法):优势:Boosting通过迭代地训练一系列基分类器,并根据前一个分类器的性能对样本权重进行调整,使得基分类器逐渐关注于难以分类的样本。它能够有效提高模型的精度和泛化能力,尤其适合解决高偏差的问题。局限性:Boosting对噪声和异常值比较敏感,容易导致过拟合。此外,由于基分类器之间存在依赖关系,Boosting的训练过程相对较慢。使用场景:Boosting通常用于分类问题,在需要处理高偏差或低准确度的场景下表现出色。3Stacking(堆叠法):优势:Stacking通过在多个基分类器上构建一个元分类器来进行集成,可以充分利用各个基分类器的预测结果,进一步提升性能。通过允许使用更复杂的元分类器,Stacking具有更强大的表达能力。局限性:Stacking的主要挑战在于选择合适的元特征以及使用交叉验证避免数据泄露。此外,Stacking通常需要更多的计算资源和时间来进行模型训练和预测。使用场景:Stacking适用于各类机器学习问题,并且在数据集相对较大、前期已经进行了一定特征工程的情况下效果较好。

喜欢离语请大家收藏:()离语

推理虽然有用但真的很令人讨厌  不当舔狗后,校花哭问为什么!  让你当好圣孙,你养一群女妖?  仙子不想理你  斗罗:封号琴魔,这个杀手有点冷  红楼之剑天外来  四合院之罪恶克星  我这样进球,会伤害到你吗?  综漫:从杀手皇后开始  快穿:病美人仙君又拿白月光剧本  我有个死要钱的系统  回到霍格沃茨的古代巫师  终于联系上地球,你说不要回答?  刚成仙神,子孙求我登基  苟在修仙世界当反派  末世:战姬指挥官  除了我,全家都穿越了  重回八零,俏媳妇改造废物老公  带着原神祈愿系统穿越到诡异世界  归零:云海梦境,山海有灵  

热门小说推荐
首辅家的小娇妻

首辅家的小娇妻

徐芝芝一觉醒变成家徒四壁,食不果腹的农家女不说,还正被未婚夫逼着下跪跟他的白月光道歉。她脚踹渣男,撸着袖子发家致富。没有想到路边随便捡了一个双腿被打折的瘸腿乞丐,居然身世不凡,才识过人,一路青云直上。还追着她不放。某人若是没有娘子就没有为夫的今日。如果您喜欢首辅家的小娇妻,别忘记分享给朋友...

万界升级系统从征服火影开始

万界升级系统从征服火影开始

万界升级系统从征服火影开始简介emspemsp好想变强啊!叮!恭喜宿主绑定万界任务升级系统,开启变强旅途。什么?你说S级忍术很难得。叮!恭喜宿主获得仙法大玉螺旋丸。什么?你说海军大将很强?叮!恭喜宿主打败海军大将赤犬。昊天锤可是最强武魂!什...

仵作狂妃

仵作狂妃

仵作狂妃简介emspemsp关于仵作狂妃她本是令罪犯闻风丧胆的名法医兼犯罪心理学专家,一朝穿越,成了西孰国一名普通人家百般宠爱的小女儿韩玥。为报仇,她重新拾起解剖刀。快速得出验尸结果收录指纹的高科技人体扫描仪成了她的神助攻。为完成前世抱负,她又不得不对他百般讨好。然而,两辈子都没谈过恋爱的她,对这种事实在是不怎么拿手。尤其对方还是西孰国唯一的异姓王,军功压人,腹黑狠辣,权倾朝野却对女人嗤之以鼻。初时,她笨拙地讨好,做美食,送礼物。他双...

史上最强店主

史上最强店主

史上最强店主简介emspemsp关于史上最强店主商通万界,让所有人给我打工。周阳意外获得万界商铺系统,交易万千位面。我曾举行一次小型拍卖会,来到的皇帝就有一百多位,听说还有两个叫李世民的皇帝。我曾让神雕世界的所有人,帮我养殖菩斯曲蛇。我曾发动海贼世界的所有人,出海帮我寻找恶魔果实。这是周阳获得万界商铺系统,成为史上最强店主的故事。新书史上最牛主神正在连载!!!不同的故事,相同的精彩!!!...

人家吃糠我吃肉,随军过上好日子

人家吃糠我吃肉,随军过上好日子

沈七七刚拿下百花影后奖就突遭意外穿到了一本年代文里。她家作为女主对照组,全家都是极品,满门都是炮灰。沈七七作为全家团宠,不知道该哭还是该笑。书里原主一路倒贴,男女主照单全收,却对她家赶尽杀绝。沈七七一个绝版陈世美加一朵盛世白莲花,渣男贱女赶紧滚!沈七七果断拦住义愤填膺杀去男主家里逼婚的哥哥们。这个狗男人我不要...

回流大时代

回流大时代

重生过去畅想未来梦幻现实,再塑传奇人生!如果您喜欢回流大时代,别忘记分享给朋友...

每日热搜小说推荐