混混小说网

手机浏览器扫描二维码访问

第296章 昏迷(第1页)

2.3检索增强生成技术

RAG(Retrieval-AugmentedGeneration)技术是一种结合了信息检索(Retrieval)和文本生

成(Generation)的自然语言处理(NLP)方法。核心思想是将传统的检索技术与现代的自然语言

生成技术相结合,以提高文本生成的准确性和相关性。它旨在通过从外部知识库中检索相关信息来

辅助大型语言模型(如GPT系列)生成更准确、可靠的回答。

在RAG技术中,整个过程主要分为三个步骤如图2.2所示:索引(Indexing)、检索

(Retrieval)和生成(Generation)。首先,索引步骤是将大量的文档或数据集合进行预处理,将

其分割成较小的块(chunk)并进行编码,然后存储在向量数据库中。这个过程的关键在于将非结

构化的文本数据转化为结构化的向量表示,以便于后续的检索和生成步骤。接下来是检索步骤,它

根据输入的查询或问题,从向量数据库中检索出与查询最相关的前k个chunk。这一步依赖于高效

的语义相似度计算方法,以确保检索到的chunk与查询具有高度的相关性。最后是生成步骤,它将

原始查询和检索到的chunk一起输入到预训练的Transformer模型(如GPT或BERT)中,生成最

终的答案或文本。这个模型结合了原始查询的语义信息和检索到的相关上下文,以生成准确、连贯

且相关的文本。

RAG的概念和初步实现是由DouweKiela、PatrickLewis和EthanPerez等人在2020年首次

提出的。他们在论文《Retrieval-augmentedgenerationforknowledge-intensivenlptasks》

中详细介绍了RAG的原理和应用,随后谷歌等搜索引擎公司已经开始探索如何将RAG技术应用到搜

索结果的生成中,以提高搜索结果的准确性和相关性。在医疗领域,RAG技术可以帮助医生快速检

索医学知识,生成准确的诊断建议和治疗方案。

2.4文本相似度计算

文本相似度计算是自然语言处理(NLP)领域的一个重要研究方向,它旨在衡量两个或多个文

本之间的相似程度。文本相似度计算的原理基于两个主要概念:共性和差异。共性指的是两个文本

之间共同拥有的信息或特征,而差异则是指它们之间的不同之处。当两个文本的共性越大、差异越

小,它们之间的相似度就越高。

文本相似度计算可以根据不同的分类标准进行分类。首先基于统计的方法分类,这种方法主要

关注文本中词语的出现频率和分布,通过统计信息来计算文本之间的相似度。常见的基于统计的方

法有余弦相似度、Jaccard相似度等。其次是基于语义的方法分类,这种方法试图理解文本的含义

和上下文,通过比较文本的语义信息来计算相似度。常见的基于语义的方法有基于词向量的方法

(如Word2Vec、GloVe等)和基于主题模型的方法(如LDA、PLSA等)。最后是基于机器学习的方

法分类,这种方法利用机器学习算法来训练模型,通过模型来预测文本之间的相似度。常见的基于

机器学习的方法有支持向量机(SVM)、神经网络等。

目前,在国内外,文本相似度计算已经取得了丰富的成果。国内方面,清华大学等机构的研究

者提出了基于深度学习的文本相似度计算方法,利用神经网络模型来捕捉文本的深层语义信息,实

现了较高的相似度计算精度。江苏师范大学的研究者提出了利用《新华字典》构建向量空间来做中

文文本语义相似度分析的方法,该方法在中文文本相似度计算方面取得了显着的效果。放眼国外,

归零:云海梦境,山海有灵  回到霍格沃茨的古代巫师  让你当好圣孙,你养一群女妖?  带着原神祈愿系统穿越到诡异世界  苟在修仙世界当反派  我有个死要钱的系统  快穿:病美人仙君又拿白月光剧本  终于联系上地球,你说不要回答?  末世:战姬指挥官  刚成仙神,子孙求我登基  我这样进球,会伤害到你吗?  四合院之罪恶克星  除了我,全家都穿越了  综漫:从杀手皇后开始  推理虽然有用但真的很令人讨厌  红楼之剑天外来  斗罗:封号琴魔,这个杀手有点冷  不当舔狗后,校花哭问为什么!  重回八零,俏媳妇改造废物老公  仙子不想理你  

热门小说推荐
奋斗在瓦罗兰

奋斗在瓦罗兰

奋斗在瓦罗兰简介emspemsp关于奋斗在瓦罗兰瓦罗兰是个风景如画,民风淳朴的地方,尤其是诺克萨斯,弗雷尔卓德,比尔吉沃特这三个城市,行事作风堪称是外交的典范,世界的楷模。在那里旅游你完全不用担心你是个外国人,以及语言不通等问题。而和皮城作为双城的祖安,更是一个人人和睦相处,每天互相只说五句话,并且居民都文采斐然的城市。至于德玛西亚?哦!那里可是闻名世界的魔法之都!你可以尽情的在那里展示你的魔法天赋,并且自称是德玛西亚人。以上你就当真的听。...

惊!弃妃劈腿战神后只想种田

惊!弃妃劈腿战神后只想种田

VS时逢战乱,大燕国分崩离析,民不聊生。火系女魔头风染画穿越到古代,被强行盖官印文书,充当军妻,婚配邋遢军汉。可笑的是掳她至边关,随意安排婚配的竟是原身相公韩王。她势要把绿帽子进行到底,放下豪言,收集天下美男来种田。自此,她带着一双儿女,手持一本破书穿梭九方秘境收集粮种,开启制火药土炮弹炼铁铸刀剑种植五谷药园...

真千金吃瓜成团宠,全家逆天改命

真千金吃瓜成团宠,全家逆天改命

玄学大师林诺诺穿成豪门真千金,大哥是高冷总裁大佬,二哥是娱乐圈顶流,三哥是叱咤风云的校霸几个哥哥都是宠妹狂魔,可惜宠的是女主假千金,而原主因为和女主争宠,在两年后惨死!林诺诺本想远离修罗场躺平吃瓜,谁知心声意外暴露,全家火葬场!林三少默默退了机票,去调查女友背景。林大少??马上放下手头工作,给自己安排全...

穿越古代,成就一代枭雄

穿越古代,成就一代枭雄

夏洛穿越古代,嫁给被下毒相公,还收养俩孩子,婆家不待见,还被原主父母欺压,没办法,她为了以后跑路,疯狂赚银子,结果相公是个大佬,俩个孩子身份也不简单。...

极品农家乐

极品农家乐

极品农家乐简介emspemsp关于极品农家乐大学毕业后,林霄回到贫瘠的家乡,继承了二叔留下来的农庄。荒凉农庄,贫瘠的田地,碎石野草几具鸟类的死尸。叮,恭喜宿主绑定农庄系统,抽奖开始。恭喜宿主,获得乌黑大铁锹一副。铁锹落地,贫土变沃土,营养成分达到最优级。恭喜宿主,获得超级西红柿种子一袋。脸盆大的西红柿,好吃到想哭。恭喜宿主,获得一口百年古井。一瓶农家井水三万起卖哦,口感倍爽,还能祛毒养颜精品。...

女神的护花狂龙

女神的护花狂龙

女神的护花狂龙简介emspemsp关于女神的护花狂龙曾被陷害,幸亏被她所救,如今兵王回归,得知她被当做联姻的筹码!势要弥补遗憾,搅动风云!...

每日热搜小说推荐