手机浏览器扫描二维码访问
放假让人快乐,旅游让人快乐,恋爱让人快乐,当这三样同时发生时,那就是三次方的快乐。
一大早六点就从床上爬了起来,然后开开心心的洗了个澡,洗漱完毕,穿上自己心爱的青年装,对着镜子左瞅瞅右瞄瞄,感觉完美之后跑进书房跟三月打了声招呼,当然就是一声简单的招呼,丢下一句:“我去约会了,你在家乖乖的啊!”
然后潇洒的一转身走出了家门,踱着步子照着约好的时间七点钟准时到了女寝楼下,让他颇为意外的是江晨霜已经在门口等着他了。
显然女孩也特别打扮了一下,衣服是余兴伟选的“工作服”,里面是件米白色的针织衫,搭配一件驼色的长外套,配上一条浅蓝色的牛仔裤跟一双简单的运动鞋,显得既青春又时尚。
虽然余兴伟此时不在,但宁为还是在心底给他点了个赞,说实话他还挺佩服余哥的,虽然平时表现的很直男,但在给女孩子挑衣服这件事上,还挺有欣赏眼光的。
宁为不知道的是,这其实跟眼光不眼光的没多大关系,余兴伟只是照着宁为给的费用,随意挑了一家差不多的品牌店,然后把要求告诉了卖衣服的小姐姐们,所有的衣服跟搭配其实都那些小姐姐们参考的……
这大概也印证了一点,专业的事情终究是要交给专业的人干才能既省心又开心。
“你看什么呢?”虽然两人已经确定了关系,但江晨霜依然有些受不了宁为炙热的目光。
“我看你像我未来老婆!”
宁为一本正经的给出了心中的标准答案,语气跟讲数学题般认真和严肃,逗得女孩又埋下头,然后宁为理所当然的上前一步牵起了丽人的小手埋怨道:“都说好的事情,还有什么好害羞的?对了,学习任务都完成没?”
“嗯!”江同学应了声。
“那就行,高数跟线代有什么不懂的等会路上你可以问我,不过等到了地方就不准问了,玩的时候就得全身心的放松。”宁为说道。
“哦,线性代数的伴随矩阵问题,我看了书但还不是很懂。”江晨霜老老实实的说道。
宁为点了点头,答道:“伴随矩阵啊?嗯,遇到伴随矩阵的问题,你得记一些公式,我跟你说啊,现在数院那帮教授出题不会给你出纯粹的伴随矩阵问题,一般都是跟逆矩阵结合在一起设置考点,而且这种题目有种特点,解法很多,我教你一个最取巧的解法,你只要看到伴随矩阵的问题,不管是证明题还是计算题,都从公式AA^*=A^*A=|A|E来着手分析。”
“有些结论是可以直接使用的,比如如果r(A)=n,则r(A^*)=n,如果r(A)=n-1,则r(A^*)=1,如果r(A)<n-1,则r(A^*)=0。给你举个例子啊,设A为n阶非零矩阵,A^*是A的伴随矩阵,当A^t=A^*时,证明|A|不等于零。你想想怎么带入刚才的公式?”
江晨霜眨了眨眼,突然发现宁为几句话好像就让一直困扰她的题目不太难了,想了想答道:“哦,那应该直接把A^t=A^*代入到AA^*=A^*A=|A|E中,得到AA^*=AA^t=|A|E,然后在用反证法,设|A|等于零,设A的行向量为αi,这种情况下αiαi^t等于零,可得A等于零,这样就跟|A|等于零相矛盾了,所以|A|不等于零。”
宁为听了回答,赞许的看了眼身边的女孩,说道:“还说不懂,我看你挺懂的嘛,随便就找出了最简单的证明方法,那我在考你道更难的题目啊,你准备好了,我们设矩阵A=……”
就这样宁为给身边的女孩出着例题,然后讲解,从简到难,从寝室走到数学研究院大门口处短短二十来分钟,江晨霜是真感觉一直挺困扰她的伴随矩阵问题似乎不成问题了,顺带着还巩固了逆矩阵跟不可逆矩阵的概念……
很清奇的体验,真的,第一次恋爱的江同学其实也不太知道其他人谈恋爱的时候是不是差不多,只是单纯觉得如果这就是恋爱的话,似乎不会耽误反而会促进学习的样子,难怪燕北大学从来不会反对学生在校园里恋爱。
等两人来到数学研究院门口,一辆黑色的奥迪,已经停在门口等着了,宁为瞅了眼牌照,正是昨天他的客户经理发给他的牌照,看了下时间,才刚刚七点二十,他跟银行那边约好的是七点半出发,看来司机也提前到了,今天所有人都很准时啊。
司机是位看上去大概三十多岁的青年师父,带着白色的手套,看到宁为带着江晨霜来到门口,立刻下了车,冲着宁为说道:“宁先生您好,我就是昨天跟您联系过的陈光明,这些天也是我为您服务,两位请上车。”
“陈师父你好,这些天辛苦你了。”宁为点了点,便拉着还在愣神的江晨霜坐到了汽车后排。
“哪来的车啊?”女孩小声问了句。
“我也不知道,银行提供的服务。你别管这个,刚才跟你讲的都懂了吗?”宁为解释了句。
“好像懂了,不过我感觉还要多做些例题巩固。”江晨霜老老实实的答道。
“嗯,如果你伴随矩阵还有问题的话,那线性相关性问题肯定也是一知半解,等等啊,陈师傅,从学校到故宫大概要多久?”
“嗯,不堵车的话大概四十分钟吧。”
“哦,那时间足够了,谢谢啊陈师父!”
得到答复的宁为转过头,继续说道:“我跟你说啊,向量组的相关或者无关性是个很抽象的概念,看到相关题目的时候你得注意有一组跟任一祖代表的不同意思,前者只要求存在,后者则要求全部,强调的是任意性,比如我给出一个条件,有向量组α1,α2……αs,恒有0α1+0α2+……+0αs=0,那么向量组α1,α2……αs是否线性相关,其实问的就是除了我刚才说的情况之外,是否还能找到另外一组k1,k2……ks,使得k1a1+……成立。
娇蛮小姐傲总裁 甜苹果(1v1) 念念难忘 炮灰万万碎 极品地主 我在霸总小说当绿茶喵 我在六个师兄面前咸鱼 狩灵纪要 君有云 穿越后我靠科举养家 武御乾坤 六朝仙侠传 清庭欢 重生恶毒大小姐变本加厉(NPH) 婚城难入 武印至尊 悍庄 真少爷团宠日常 我每周随机一个新职业 十年牧心
我真不是法爷简介emspemsp关于我真不是法爷穿越者林奇觉醒在神秘魔法统一高考考场上。这神秘魔法主导的现代世界,存在不朽超凡法术!恢复绝症移除疾病跨越千里传送术操纵他人支配人类湮灭万物解离术暂停光阴时间停止身带镣铐的他首要便是成为法师学徒,得到死刑赦免法师主宰世界,站立云端之上,最关键的便是超凡记忆与卓绝计算林奇戛然发现,大脑中出现记忆宫殿,能够记录万物包括所有复杂法术模型?PS这就是一个法爷...
九阳邪神简介emspemsp关于九阳邪神九阳神功铸就无上武道!一代邪神叶轻尘因为一件天地至宝而遭挚爱背叛,身死道消,灵魂却意外重生回到十六岁少年时期。前世,他是一个快意恩仇的邪神!今世,他立誓要做一个人见人怕的冷血杀神,...
超级小医生简介emspemsp关于超级小医生本是混吃等死的富家子弟,却家族蒙难,父母失踪,落魄街头。同学欺辱,兄弟反叛,订好的婚约无故作废!一朝觉醒,奋勇向前,我虽良善,但绝不懦弱,我虽医者仁心,但绝不放狼归山!...
检测到该星球为魔法文明,生成职业中你可选择法师战士和牧师。您已选择法师。您已选择旅行法师。生成技能中技能生成完毕。登陆世界中祝您生活愉快。简单来说这就是一个因系统失误,让穿越者成为没落的魔法世界唯一魔法师的故事。如果您喜欢我是魔法文明的唯一魔法师,别忘记分享给朋友...
世界很大,妖精很多。妖精盯上我的肉,我却盯上它们的妖丹。世界很大,修行很难。有人修行一生,不过入门。而我却在嗑药。世界很大,我愿丈量。带着一个炼丹炉穿越到了一个有妖精的古代,开局就要治疗自己的绝症。我张巍,除了奋斗,别无选择。如果您喜欢聊斋炼丹师,别忘记分享给朋友...
陆尘有五位师父。大师父,一域之主,冠绝古今。二师父,圣地之主,修为盖世。三师父,千古女帝,名传世间。四师父,丹界至尊,誉满天下。五师父,炼器帝师,才情横溢。五个师父倾国倾城,有着沉鱼落雁般的美貌,而如果您喜欢我家师父超凶哒,别忘记分享给朋友...